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ABSTRACT 

In the era of smart technologies, Agriculture 6.0 utilized the most advanced technologies like artificial 

intelligence to enhance smart farming systems. It processed an optimal crop selection to maximize agricultural 

productivity based on specific environmental and soil conditions.  

In this work, the new Deep Learning (DL) method is presented such as the Residual Recurrent Unit (RRU) 

Model which has two key modules Adaptive Scaling in the Transform Module and a Residual Connection 

Module. These modules optimized the model's sensitivity to varying inputs and also allowed untransformed 

data to directly influence the cell state to improve gradient flow. These features enhance the model performance 

by similar past and present inputs effectively. To further optimize performance, Siberian Tiger Optimization 

(STO) was used to tune the hyperparameter and attain the best possible result. The experimental result of the 

novel RRU model validated for both with and without STO based on various metrics like Accuracy, Precision, 

Recall, F1-Score, ROC, Loss, Cohen's Kappa and Matthews Correlation Coefficient etc. based on the 

validation, the proposed RRU model has achieved a superior performance in all aspects than traditional 

methods.  

Also, this work included a hardware setup and collected data from a real field to investigate the model’s 

performances based on soil and environmental factors. Therefore, real data results based on the novel RRU 

model provided an accurate crop recommendation and it is majorly supportive of precision agriculture with 

effectiveness in future.  

 

Keywords: Agriculture 6.0, IoT data collection, novel RRU Model, hyperparameter tuning, accuracy, prototype 

performance. 

 
INTRODUCTION 

 

he rapid population growth is increased 

globally which is projected to reach 9.8 

billion by 2050. The need agricultural 

advancements are also necessary to feed the 

whole living being. The new era in farming  

is Agriculture 6.0 which is integrated with     

a DL, the Internet of Things (IoT) and other 

advanced technologies (Neves et al., 2023). 

These integrations are used to enable ultra-

precise farming Unlike traditional 

methodologies, Agriculture 6.0 provides a 

synchronized and responsive to monitor and 

optimizes continuously based on crop health, 

soil conditions and environmental factors 

given in Figure 1. These factors are 

associated with real-time IoT data taken from 

sensors in real fields (Neves et al., 2023). 

With this enhancement, a data-driven system 

is used to analyse local and global data 

streams using DL methods. It provided 

accurate decision-making of soil conditions, 

pest conditions, crop health and production, 

future climate conditions and sustainability 

“smart ecosystems” on farms (Patil et al., 

2024).  

 

 

T 
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Figure 1. Advanced Farming Agriculture 6.0 

 

The IoT integration handled real-time 

sensors like soil pH, N (Nitrogen), P 

(Phosphorus), and K (Potassium) nutrient 

levels, temperature, humidity and so on 

continually monitored by Medela et al. 

(2013). It assisted the farmers in monitoring 

crop health and growth precisely by 

Kaloxylos et al. (2013). It also assists farm 

workers in assessing pest attacks and plant 

diseases in real-time. The Loamy and sandy 

soil data provide a suitable for autonomous 

smart farming by Abba et al. (2019). Some 

sensors measured the residual nitrate level, 

organic matter soil concentrations and real-

time transpiration rate by an author De 

Benedetto et al. (2019). Also, IoT supported 

the necessity of pesticide time and quantity in 

the field where excessive pesticides can 

contaminate the crops (Dutta et al., 2019; 

Rajak et al., 2023). 

Advanced DL methods play a crucial role 

in a Data-Driven field that can handle 

surveillance, monitoring, controlling and 

decision-making effectively. Deep neural 

networks are mainly used for pattern 

recognition that consists of hidden layers to 

identify an object (Shrestha and Mahmood, 

2019). Also, Zhuang et al. (2022) presented 

the DL method of AlexNet and VGGNet for 

a broadleaf weed dataset with a small image 

resolution. The ResNet-50-v1 method is done 

in a well-illuminated environment for weed 

classification by Leminen Madsen et al. 

(2020). In some cases, Trong et al. (2020) 

implemented a multi-model Deep Neural 

Network of late fusion used for Plant 

Seedlings and weeds data set with higher 

accuracy. In an advanced, hybrid method of 

Convolutional Neural Network (CNN) and 

You Only Look Once (YOLO) classification 

using various Grass, Creeping Thistle, 

Bindweed, and California poppy datasets for 

prediction (Saqib et al., 2023).  

In Agriculture 6.0, crop recommendations 

are an important factor that supports soil and 

crop quality, productivity and prevention 

form diseases. For an accurate 

recommendation of crops, factors like 

historical yield, weather range, market 

demand and soil patterns are necessary. 

Kamatchi and Parvathi (2019) developed 

Neural Network to determine the best crops 

for specific weather conditions to improve 

the success rate of recommendations. To 

provide a farmer with transparent and 

accurate recommendations, the eXplainable 

AI (XAI) method is used by Shams et al. 

(2024). Also, Dey et al. (2024b) employed 

the edge devices to compare with six DL 

methods for crop recommendation. Recently, 

Xu et al. (2024), presented cascaded multi-

task crop recommendations using the Shared-

MMoE model and also gating network is 

optimized in every task. Popular models like 

https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1211235/full#B43
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1211235/full#B32
https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1211235/full#B32
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Support Vector Machine (SVM), XGBoost, 

Random Forest, KNN and Decision Tree are 

utilized for crop recommendations based on 

NPK, soil pH, and climatic factors by Dey et 

al. (2024a). The statistical methods used to 

define crop behaviour recommendation 

systems to attain highly advanced smart 

farming (Fassa et al., 2022). 

In this work, the novel RRU architecture is 

proposed for an efficient crop 

recommendation. It has two advanced 

modules:  

1) adaptive scaling-based transformer 

module to minimise oversaturation risks 

when handling real-time sensor data;  

2) Residual Connection Module to 

improve gradient flow and enable long-term 

dependencies.  

Also, Siberian Tiger Optimization (STO) 

tuned the RRU’s hyperparameter to attain 

optimal performance in Agriculture 6.0. This 

proposed RRU model is applied for IoT data 

with a hardware prototype and analyses the 

data to provide an accurate crop 

recommendation based on their soil 

behaviours. 

  

MATERIAL AND METHODS 

 

Figure 2 shows the proposed workflow 

which has processed several steps for crop 

recommendation such as data collection, Pre-

processing, Novel RRU classification with 

STO tuning and performance metrics 

evaluation. 

 

 
 

Figure 2. Proposed workflow 

 

Dataset  

In this work, the dataset is collected from 

real land using a sensor associated with IoT. 

This dataset includes soil and environmental 

parameters to analyse soil characters. The 

parameter includes N, P, and K which 

indicate the soil nutrient level for leaf 

development, root and seed production, water 

regulation and plant health. The dataset also 

collected rainfall that influences the 

environment and pH of the soil ranging from 

acidic to neutral. These factors may affect 

nutrient availability and suitability for 

different crops. This dataset can support 

applications like crop suitability analysis, 

precision agriculture and optimizing crop 

yield under specific conditions. After the data 

collection, the preprocessing is performed 

that handles data cleaning, normalization and 

splitting into training and testing sets to 

ensure data quality and consistency. 

 

Proposed Method 

In this work, the novel RRU method is 

proposed that is optimised by using an STO 

model to enhance the classification quality. 

The RRU model is an enhancement method 

of the Recurrent Neural Network (RNN) 

(Selvanarayanan et al., 2024) where adaptive 

scaling and residual connections are 

additionally included. 

 

Novel RRU Model 

The proposed RRU model is designed to 

improve the RNN’s sensitivity by preventing 

oversaturation in the cell state. Figure 3 

presents the RRU model’s architecture that 

contains the main features of Forget Gate, 
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Cell state update, output module, Adaptive 

Transform Module and Residual Connection 

Module, respectively. 

 

Forget Gate: The forget gate (ft) is used 

to control and retain the data from the 

previous cell state Ct−1. The ft is multiplied 

by Ct−1 which retains past information in the 

current state. It is scaled to balance the past 

memory influences with new input. 

 

Cell State Update: The cell state (Ct) is 

updated by combining Transform Module 

tr=tanh(it) and the scaled previous cell state 

Ct−1×ft that is expressed in the following. 

 (1) 

Thus, memory retention is controlled by 

this update by allowing an input to adapt and 

prevent the risk of oversaturation. 

 

Adaptive Transform Module: Generally, 

Transform Module (tr) is represented as 

tanh(it), where it is the input at the current 

time step t. By applying the hyperbolic 

tangent (tanh) function, it restricted the value 

range for the cell state update that constrains 

values to a bounded range. This module 

prevented the cell state from larger size 

which led to oversaturation and reduced 

classification sensitivity. Here, the Transform 

Module is upgraded with a learnable scaling 

parameter (α) that is expressed in Equation (2). 

 
(2) 

  

This parameter (α) allows the Transform 

Module to adjust the degree of transformation 

to handle various signal intensities. This 

learning parameter scales the influence of the 

input dynamically to attain better control over 

the cell state and also prevent oversaturation. 

 

Residual Connection Module: This 

module enables the model to retain previous 

input state information. That is where input 

ht−1 is added directly to the cell state update 

bypassing the transformation when needed 

even for a complex transformation. 

Therefore, the cell state update equation is 

given in the following. 

 (3) 

Here, ht−1 indicates a residual connection 

that directly connected with Ct. 

This feature was used to retain previous 

states' information and achieved an anti-

oversaturation mechanism. The residual 

connection allows the gradient flow and 

mitigates the vanishing gradient issues by 

preserving significant information across 

time steps. 

 

Output: Finally, RRU’s output is 

evaluated at each time step that retains the 

modified cell state Ct benefits based on 

adaptive Transform and the residual 

connection. The output of RRU is expressed 

as: 

 (4) 

  
 

Figure 3. Novel RRU Architecture 
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From the result of RRU, both the adaptive 

Transform Module and the residual 

connection are used. The dynamic control of 

the input transformation is achieved by an 

adaptive scaling (α). It provides RRU as more 

versatile across various magnitudes and 

patterns. The residual connection retains 

previous states' data and enhances the 

stability and performances even in multi-class 

classification. Therefore, the novel RRU 

model provided a more robust to capture a 

temporal dependency with a classification 

sensitivity and also avoid an oversaturation. 

 

RRU Parameter Tuning 

Metaheiristics algorithms are used to solve 

real-world problems (Kavitha et al., 2024). 

To attain optimal accuracy in RRU’s 

performances, the hyperparameter of RRU is 

tuned by using an STO method (Trojovský et 

al., 2022).  

The STO method is based on the hunting 

behaviours of Siberian tigers that hunt prey 

and fight with brown bears. This algorithm is 

derived using these behaviours iteratively to 

identify an optimal solution for complex 

issues. The mathematical presentation of the 

STO Algorithm is presented below.  

 

Initialization 

 Initialize the tiger’s position in the 

search space is generated randomly as 

Population Matrix (X); 

 The initial best solution (Xbest) is 

based on the objective function. 

 

Phase 1: Prey Hunting 

This phase presented an exploration that is 

the prey-searching behavior of tigers. When 

the Tigers are aimed to move closer to the 

prey that is represented by a better objective 

function value. The Position Update is 

expressed using the equation (5). 

 
(5) 

where rand indicates a random number in 

[0, 1], Mi,j denotes a member of the 

population, Ii,j represents a random number 

from the set {1, 2} and j indicates The 

dimension index. 

The Final Position Update is expressed 

by using equation (6) 

 
(6) 

where ulj, llj denotes the Upper and lower 

bounds of the function and t denotes the 

Current iteration number. 

 

Phase 2: Fighting with a Bear 

This phase mimics tigers fighting with a bear. 

The tigers select a bear's position and adjust 

their own position based on the bear's 

location, resulting in significant position 

updates. 

 

Position Update (Stage 1): 

 
(7) 

where Fk,Fi present objective function 

values of solutions xk and xi, respectively 

and rand indicates A random number in [0, 1]. 

 

Final Position Update (Stage 2): 

 
(8) 

 

Iterative Process 

The STO algorithm alternates between the 

Prey Hunting and Bear Fighting phases, 

updating tiger positions and recalculating 

objective function values at each iteration. As 

better solutions are discovered, the best 

solution (Xbest) is updated accordingly. 

 

Pseudocode for Optimizing RRU 

1. Initialize: 

o Randomly initialize the population of 

candidate solutions representing RRU 

hyperparameters. 

2. Evaluate: 

o Train the RRU model using the current 

candidate solutions; 

o Evaluate the trained model on the 

validation dataset; 

o Compute the validation accuracy as the 

objective value to maximize. 

3. Prey Hunting: 

o Select a prey position based on fitness 

scores; 
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o Update tiger positions using the prey 

hunting equation (5). 

4. Bear Fighting: 

o Select a bear position for each tiger; 

o Update tiger positions using the bear 

fighting equation (7). 

5. Iterate: 

o Repeat steps 3 and 4 until the stopping 

criteria are met (e.g., maximum iterations or 

convergence). 

6. Output: 

o Return the best solution (Xbest) and its 

associated accuracy. 

The STO algorithm's novel approach to 

mimicking tiger behaviors ensures an effective 

search through the solution space. By combining 

exploratory (hunting) and exploitative 

(fighting) strategies, the STO method fine-

tunes RRU hyperparameters to achieve 

higher classification accuracy and robustness. 

 

Experimental result 

The dataset was split into 70% for training 

and 30% for testing to ensure the model 

learns effectively while retaining enough data 

for evaluation. The training dataset (70%) 

was used to train the machine learning model 

by identifying patterns and relationships 

between the features (e.g., nitrogen, 

phosphorus, potassium, temperature, 

humidity, pH, and rainfall) and the target 

label (crop type). The remaining testing 

dataset (30%) was used to assess the model's 

performance on unseen data, ensuring its 

generalization to new samples. 

To evaluate the performance without and 

with optimization of the novel RRU model, 

the classification metrics are validated by using 

the following metrics (Ismail et al., 2024). 

 Accuracy is used to validate the 

proportion of correct predictions among all.  

 Precision is defined as correctly predicted 

positives out of total predicted positives. 

 Recall presented Proportion of correctly 

predicted positives out of actual positives.  

 F1-Score defined a Harmonic mean of 

precision and recall. 

 ROC-AUC Score is used to measure 

the ability to distinguish between classes. 

 Logarithmic Loss is defined as an 

incorrect prediction with probabilities. 

 Cohen's Kappa (CK) is used to 

compare model accuracy to a random chance 

agreement.  

 Matthews Correlation Coefficient 

(MCC) measured the correlation between 

actual and predicted classifications. 

 

RESULTS AND DISCUSSION 

 

Result of Novel RRU model classification

 

  
 

Figure 4. Novel RRU’s Training and Validation Process 

a) Accuracy result; b) Loss result 

 

Figure 4a presents the Accuracy Curves on 

the left side, it shows the Training Accuracy 

curve (blue line) starts low and steadily 

increases reaching a plateau of around 40 

epochs. Also, the Validation Accuracy 

(orange line) represents the validation 

a) b) 
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accuracy of the RRU model that omits the 

dataset not used for training. It also starts low, 

increases, but then starts to plateau and even 

slightly decreases after around 25 epochs. 

The RRU model attains a maximum accuracy 

of 96.52% which is higher than all traditional 

methods. Also, Figure 4b, presented the Loss 

Curves of the RRU model with Training Loss 

and validation loss. Here, Training loss (blue 

line) shows the model's loss that starts high 

initially and then rapidly decreases when it 

reaches a minimum of around 40 epochs. 

Also, the Validation Loss (orange line) starts 

high and decreases but it starts to increase 

after around 25 epochs. 

 

 
 

Figure 5. Confusion Matrix of novel RRU model 

    

Figure 5 shows the confusion matrix of the 

novel RRU method where the diagonal 

elements represent the correctness of the 

classification result. Every diagonal cell 

indicates a number of instances that correctly 

resulted in their respective classes. For 

example, the top-left cell indicates that 34 

instances were correctly classified as class 0 

whereas, off-diagonal elements represent 

incorrect classifications. 

 

 
 

Figure 6. ROC curve of novel RRU model 
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The multi-class ROC curve results with 

AUC scores for every class is presented in 

Figure 6. Every line represents the ROC 

curve for a specific class and the AUC score 

indicates its performance. Here, mostly AUC 

has a high score that shows its strongness in 

performance. Also, a few classes have a 

lower AUC score that is also considered for 

further optimization. 

 

Result of the proposed STO-RRU Model 

After the tuning process of the RRU 

hyperparameter, the fitness curve is presented 

to attain an optimal solution in RRU 

performances. In Figure 7, the validation  

loss or fitness value initially fluctuates 

significantly but steadily decreases over 

iterations that show convergence to an 

optimal solution. From iteration 20 to 50,   

the fitness value steadily declined showing    

a proposed ability to improve the solution 

effectively. Beyond iteration 50, around    

0.7-0.8, the curve stabilizes which shows   

the model has converged to a near-optimal 

solution. Therefore, significant improvement 

in fitness value and effective convergence, 

validating its performance is attained in it. 

 

 
 

Figure 7. Fitness Curve of STO-RRU model 

 

 
 

Figure 8. STO-RRU’s Training and validation based on Accuracy and Loss result 
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Figure 8 shows the training and validation 

performance of a model over 50 epochs.   
The STO-RRU model exhibits strong 

performance on the training data that attains a 

high accuracy of approximately 98.33% and a 

low loss of around 0.07. it is clear that it has 

an effective learning of the training patterns. 

Therefore STO-RRU model appears to be 

performing well in training and validation of 

both accuracy and loss which is slightly 

better than the without optimization of the 

RRU model. 

 

 
 

Figure 9. Confusion Matrix of STO-RRU model 

 

Figure 9 shows the confusion matrix of 

STO-RRU across 22 distinct classes. The 

diagonal values are significantly higher the 

model performs well in accurately classifying 

samples into their correct classes. For 

example, for class 0, 34 samples are correctly 

classified, while for class 20, 26 samples are 

correctly classified. Also, off-diagonal entries 

achieved low confusion between classes.  

By comparing both RRU and STO-RRU, 

both are strong predictions along the diagonal 

that indicate good overall classification accuracy. 

However, the STO-RRU matrix demonstrates 

slightly better than is shown in Table 1. 

 
Table 1. Confusion matrix comparison with and without STO optimization in the proposed RRU model 

 

Aspect STO-RRU RRU 

Diagonal Values Cleaner diagonal, more correct predictions. Strong diagonal but slightly less accurate. 

Off-Diagonal Errors Fewer misclassifications (almost negligible). More off-diagonal errors in some classes. 

Class-Wise Performance Higher correct classifications (e.g., class 20). 
Some classes (e.g., 7, 10, 12) show 

misclassification. 

Overall Accuracy Higher accuracy with better optimization. 
Slightly lower accuracy than STO-RRU 

but high among other models. 

 

The comparison clearly showed that 

novel RRU performances are better than their 

actual ones while performing optimization 

like STO in it.  
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Figure 10. ROC of STO-RRU model 

 

The ROC curve of the STO-RRU model  

is given in Figure 10 which shows the 

performance of a classification model for 

multiple classes. Each curve corresponds to  

a specific class, with the True Positive     

Rate (TPR) plotted against the False Positive 

Rate (FPR). The AUC for each class is     

1.00 which indicates perfect classification 

performance as the model achieves ideal 

separation between all classes with no false 

positives or negatives. 

 
Table 2. Overall performance comparison of proposed and traditional methods 

 

 

Table 2 shows the overall performance 

based on various metrics for the proposed 

RRU with and without optimization. As a 

result, showing that the proposed STO-RRU 

model attained a better score than the Novel 

RRU model in all the aspects where the STO-

RRU model achieved an accuracy of 98.33% 

and the RRU model attained 96.52%, 

respectively. Similarly, the STO-RRU vs. 

RRU performed on other metrics are 

precision as 98% vs. 96.61%, recall as 98% 

vs. 96.49%, and F1-score as 98% vs. 96.44%. 

Also, STO-RRU also has a higher ROC-AUC 

score of 1 and RRU of 0.99 where the lower 

logarithmic loss of STO-RRU is 0.07 and 

RRU is 0.094, respectively. Then the metrics 

of CK and MCC have a similar value on both 

proposed models that is 0.98 and 0.963 are 

attained by STO-RRU and RRU. Therefore, 

the proposed model RRU has an effective 

Method Accuracy Precision Recall F1-Score ROC-AUC Score Logarithmic Loss CK MCC 

Proposed STO-RRU 98.33 98 98 98 1 0.07 0.98 0.98 

Proposed RRU 

(without optimization) 
96.52 96.61 96.49 96.44 0.99 0.094 0.963 0.963 

Bi-GRU 95.18 95 95 95 1 0.16 0.95 0.95 

Bi-LSTM 93.91 94 94 94 1 0.19 0.94 0.94 

Deep AR 95.3 95 95 95 1 0.14 0.95 0.95 

Dense layer 95.3 96 95 95 1 0.14 0.95 0.95 

VAE 50.76 51 51 50 0.94 2.42 0.48 0.48 

CNN 72 66 88 75 0.75 0.65 0.44 0.47 
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performance and also after performing 

optimization, the result has an extraordinary 

improvement and enhanced the model's 

performance effectively. Other methods like 

Bi-GRU, Bi-LSTM, Deep AR, and Dense 

layer also performed a good performance 

(~95% accuracy) but all these are behind the 

proposed optimised and without optimised 

RRU model. In contrast, VAE and CNN 

perform poorly with 50.76% and 72% 

accuracy, respectively.  

As a result, the proposed model 

demonstrates its ability to classify the data 

accurately and correctly identifying the crop 

label with a minimum misclassification. 

Therefore, this proposed model ensured     

the reliability and robustness of crop 

recommendation suitability based on the   

real data. 

 

Hardware setup 

The proposed system presented a 

hardware setup of real-time data of 

environment and soil features. The proposed 

system integrated IoT-based sensors and 

proposed optimised RRU techniques for  

real-time crop recommendation which is 

shown in Figure 11. It integrates sensors     

for NPK levels and pH to measure essential 

soil parameters and also and conductivity 

sensor is used to monitor rainfall. An 

ESP8266 module with Arduino ATmega328 

was used to collect and manage sensor data 

and an LCD display provided real-time 

feedback to users.  

For an IoT integration, the ESP8288 

accessed the Thinger.io platform for remote 

monitoring used to enable users to track soil 

and environmental data conveniently. The 

proposed optimized RRU model processes 

the collected data and then processes its 

advanced feature extraction and classification 

to recommend the most suitable crops based 

on its conditions. This proposed system 

ensured that accurate data-driven crop 

recommendations were effectively processed 

with real data to attain modern precision 

Agriculture 6.0.  

 

 
 

Figure 11. Hardware prototype with integration of proposed STO-RRU model 
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Figure 12. IoT ThingSpeak channel monitoring  

 

Figure 12 shows a ThingSpeak channel 

monitoring various parameters of an NPK 

based on soil health. The channel tracks 

conductivity values between 0 and 1, pH 

between 5 and 8, nitrogen between 0 and 120, 

phosphorus between 0 and 80, potassium 

between 0 and 60, and moisture between 0 

and 8. Based on the data, the minimization of 

conductivity, pH, and phosphorus levels 

increases the potassium levels and fluctuates 

the nitrogen and moisture levels. It is done by 

using the proposed optimised RRU model to 

handle a suitable recommendation. Through 

this system, the optimised crop growth is 

performed and controls the nutrient levels 

and monitors an environmental condition. 
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Figure 13. Optimised RRU crop recommendation 
 

Figure 13 shows the result of optimised 

RRU crop recommendation using real soil 

parameters that are explained in the 

following. 

 Conductivity scored as 0.0 which 

shows low electrical conductivity in the soil 

that contains a low salt content or poor 

mineral composition. 

 pH scored as 5.0 where the soil shows 

slightly acidic affecting nutrient availability 

and soil microbial activity. 

 N, P, and K scored as 122, 80 and 72, 

respectively, suggesting a moderate nutrient 

content in the soil. 

Based on these parameters, the STO-RRU 

model has recommended a crop that is 

tolerant to low conductivity and slightly 

acidic conditions and that has moderate 

nutrient requirements. 

 

CONCLUSIONS 

 

In this work, an accurate crop 

recommendation is presented with a novel 

RRU method to enhance Agriculture 6.0. The 

proposed work handles the real IoT data 

using sensors and wireless devices that are 

classified using the RRU model. The RRU 

model has performed a classification for N, 

P, K, and PH, rainfall data to analyse the soil 

fertility. The RRU model has implemented 

two new features Adaptive Scaling in the 

Transform Module and a Residual 

Connection Module that shows a unique 

advancement of the proposed work. The 

result of the proposed RRU model was 

validated with and without the STO model 

which attained a superior performance than 

other traditional methods. After tuning, the 

RRU model has an extraordinary performance 

with various metrics such as accuracy (98.33), 

precision (98), Recall (98), F1-score (98), 

ROC-AUC (1), Logarithmic Loss (0.07), CK 

(0.98) and MCC (0.98), respectively. These 

results established the most effective solution 

for crop recommendation and ensured robust 

learning and decision-making. This innovation 

and performance definitely position the RRU 

as the most reliable and efficient system for 

crop recommendation in the Agriculture 6.0 

framework. 
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